針對深圳國家生物醫(yī)藥產(chǎn)業(yè)園區(qū)內(nèi)醫(yī)藥企業(yè)廢水特點進行提標處理,設計了3種深度處理方案對其進行中試研究比選。結果表明,以強化除磷脫氮生化處理系統(tǒng)為核心,臭氧氧化-生物活性炭為深度處理的組合工藝對該類廢水具有較好的處理效果,其中COD、氨氮、總氮、總磷的平均出水濃度為8 mg/L、0.1 mg/L、3.8 mg/L、0.2 mg/L,可穩(wěn)定達到《地表水環(huán)境質(zhì)量標準》(GB 3838-2002)IV類水標準(其中總氮≤5 mg/L)。
深圳國家生物醫(yī)藥產(chǎn)業(yè)園區(qū)醫(yī)藥企業(yè)排放的廢水成分主要以化學合成類、混裝制劑類為主,輔以中藥類、提取類、生物工程類、發(fā)酵類。該類廢水通過城市生活污水處理廠無法直接處理,為了保護環(huán)境安全,促進園區(qū)內(nèi)生物醫(yī)藥企業(yè)的發(fā)展和潛在生物醫(yī)藥企業(yè)的入駐,擬在園區(qū)內(nèi)建設統(tǒng)一的醫(yī)藥廢水處理廠,將園區(qū)內(nèi)自行處理至接管標準的各類廢水收集后作進一步深度處理。對于成分復雜、可生化性差的醫(yī)藥廢水來說,仍是目前國內(nèi)外水處理的熱點與難點。目前,在醫(yī)藥廢水的處理上,國內(nèi)外研究者針對低濃度COD廢水,采用CASS、SBR、MBR、UNITANK以及氧化溝等好氧工藝處理方式進行研究,對于高濃度COD廢水通過厭氧法進行處理。本研究在確定工藝時采用生化處理與深度處理相結合的方式,尋求穩(wěn)定可靠的工藝流程及參數(shù),出水水質(zhì)達到《地表水環(huán)境質(zhì)量標準》(GB 3838-2002)IV類水標準(其中TN≤5 mg/L)。
1 材料和方法
1.1原水水質(zhì)
選取醫(yī)藥園區(qū)內(nèi)具有代表性的醫(yī)藥企業(yè)1#(化學合成類)、2#(混裝制劑類)作為取水企業(yè),通過園區(qū)廢水導入和遠程運輸調(diào)水相結合的模式,提供中試研究用水。
取水方案為采用罐車按3車次/d,每車次7 m3的水量將醫(yī)藥企業(yè)1#廢水運送至中試基地內(nèi)調(diào)蓄池;采用管道導入按80~90 m3/d將醫(yī)藥企業(yè)2#廢水泵送至中試基地內(nèi)調(diào)節(jié)池,按企業(yè)1#廢水0.4 m3/h和企業(yè)2#廢水3.8 m3/h混合成試驗用水,具體水質(zhì)情況見表1。
1.2工藝流程方案
本中試研究設計處理水量為100 m3/d,系統(tǒng)采用強化除磷脫氮工藝作為主體生物處理工藝,具體工藝流程如圖1所示。根據(jù)深度處理單元的不同共設計以下3種比選方案。
工藝方案比選試驗研究中,各工藝單元試驗條件為:調(diào)節(jié)池和水解酸化池的水力停留時間(HRT)分別為10 h、4.7 h,當系統(tǒng)可生化性較好時,可超越預處理單元。強化除磷脫氮工藝為A2N工藝變形(工藝流程見圖2),硝化池設置辮帶式纖維填料,HRT總為18.3 h,其中厭氧段∶缺氧段∶硝化段∶好氧段=2.0∶3.1∶9.8∶3.4,混合液懸浮固體濃度(MLSS)為4 000~6 000 mg/L,曝氣量為23.46 m3/h,回流比R為100%。深度處理單元中臭氧接觸柱接觸時間為10 min,臭氧投加量為10~20 mg/L;活性炭柱濾速為10.5 m/h,填料為ZJ-15型3~5 mm活性炭;曝氣生物濾池停留時間為15 min,填料為3~5 mm陶粒;自養(yǎng)反硝化濾池停留時間為60 min,填料為10 mm硫粒;混凝沉淀池混凝時間為30 min,投加混凝劑為硫酸亞鐵,沉淀時間為60 min;反滲透設備采用PP棉進行預處理,操作壓力4.1 MPa,有效膜面積7.9 m2,最大水通量1.316 m3/(m2˙d)。
醫(yī)藥廢水通過預處理單元后進入強化除磷脫氮工藝的厭氧池,與回流污泥在厭氧池中混合,然后混合液進入泥水分離池,在泥水分離池進行分離,上清液的20%~30%進入除磷沉淀池進行化學除磷,其余上清液泵送進入硝化池,污泥與硝化池的硝化液在缺氧池混合,之后泥水混合液進入好氧池(后曝氣池),經(jīng)二沉池沉淀后出水進入深度處理單元。
1.3分析項目及方法
COD:重鉻酸鉀法;NH3-N:納氏試劑光度法;TN:堿性過硫酸鉀消解—紫外分光光度法;TP:過硫酸鉀消解—鉬銻抗分光光度法;SS:重量法。
2 結果與討論
2.1不同工藝組合方案對污染物的去除效果
2.1.1不同工藝方案對COD的去除效果
醫(yī)藥廢水中難降解有機物含量較高,要將其降解到30 mg/L以下,COD的去除為研究的重點。中試期間不同組合工藝對COD的去除效果見圖3。
由圖3可以看出,中試研究分別模擬了高、低負荷下強化除磷脫氮工藝對于有機物的去除情況。進水COD在200~450 mg/L,系統(tǒng)出水COD基本穩(wěn)定在30~38 mg/L,平均出水濃度為33.9 mg/L,平均去除率為87.2%。針對地表IV類水標準中COD排放限值要求,為保障總出水穩(wěn)定達標,減小排放風險,需增加深度處理方案對有機物及其他污染物進一步處理。
方案一中二級出水經(jīng)臭氧氧化后降至24~28 mg/L,其中臭氧氧化塔對COD的平均去除率為27.4%,由于臭氧能將部分有機物氧化成CO2,因此去除率較高;再經(jīng)生物活性炭濾池處理,利用物理吸附、化學吸附和生物降解綜合作用,出水COD進一步降至5~15 mg/L,平均為8.0 mg/L,生物活性炭濾池的平均COD去除率為49.5%;系統(tǒng)總平均COD去除率為76.6%。系統(tǒng)運行期間,出水COD可以穩(wěn)定達到地表水環(huán)境IV類標準要求。
方案二中出水COD為15~30 mg/L,平均去除率為32.8%,其中COD的去除主要依靠曝氣生物濾池部分硝化作用消耗。
方案三中二級出水經(jīng)過預處理單元進入反滲透裝置后,出水COD測定低于檢測限,該方案可以保障出水安全穩(wěn)定,出水標準遠高于地表IV類水標準。
2.1.2不同工藝方案對氨氮及總氮的去除效果
由圖4可以看出,由于醫(yī)藥廢水混合后中氮的濃度較低,在運行期間會投加10~15 mg/L的氯化銨來調(diào)整進水NH3-N濃度并控制在30~40 mg/L。系統(tǒng)運行穩(wěn)定后,平均出水NH3-N低于0.1 mg/L,對于NH3-N的平均去除率已達到99%以上。由于強化除磷脫氮工藝具有較優(yōu)的硝化效果,NH3-N主要在前端的生物處理單元去除,出水NH3-N濃度較低在0~0.8 mg/L,方案一~方案三出水NH3-N濃度均低于0.1 mg/L。出水滿足IV類水標準限值要求(NH3-N≤1.5 mg/L)。
由圖5可以看出,在穩(wěn)定運行階段,強化除磷脫氮工藝出水TN濃度在2.1~5.0 mg/L,平均出水TN為3.8 mg/L,平均去除率為88.4%。強化除磷脫氮工藝采用反硝化除磷過程進行脫氮,脫氮效果遠好于傳統(tǒng)工藝,在出水具有較低NH3-N濃度的基礎上,同時滿足TN出水低于地表IV類水標準限值要求(TN≤5 mg/L)。
方案一中二級出水經(jīng)臭氧氧化+生物活性炭濾池處理后出水TN為1.7~4.7 mg/L,平均出水濃度為3.5 mg/L,平均去除率為18.4%,系統(tǒng)對TN的去除效果并不明顯。這可能是由于臭氧出水中含有較高的溶解氧導致系統(tǒng)內(nèi)溶解氧比較充足,不具備反硝化菌生長的條件,因此幾乎未發(fā)生反硝化,僅靠同化作用去除了少量TN。
方案二中硫自養(yǎng)反硝化池的反硝化效果較優(yōu),可觀察到填料表面有黃褐色微生物和氣泡產(chǎn)生??偝鏊甌N濃度在0.6~2.2 mg/L,平均濃度為0.9 mg/L,平均去除率為78.1%。
方案三通過反滲透處理后出水TN濃度為1.7~2.1 mg/L,平均出水濃度為1.8 mg/L,TN的平均去除率為52.6%,TN出水水質(zhì)遠高于地表IV類水標準限制要求。
2.1.3不同工藝方案對總磷的去除效果
由圖6可以看出,系統(tǒng)進水TP為3.0~4.3 mg/L,強化除磷脫氮工藝出水TP均在0.3 mg/L以下,平均出水TP為0.18 mg/L,平均去除率為95.4%。
由于強化除磷脫氮工藝出水TP已經(jīng)處理到較低的濃度范圍內(nèi)符合出水標準要求,因此方案一和方案二對TP的深度處理效果均不明顯;方案三對于TP來說,通過反滲透處理后出水后TP低于檢測限,TP出水水質(zhì)遠高于地表IV類水標準限制要求。
2.1.4不同工藝方案對SS的去除效果
由圖7可以看出,在整個調(diào)試及穩(wěn)定運行階段,強化除磷脫氮工藝進水SS濃度為42.1~82.3 mg/L,由于強化除磷脫氮工藝出水經(jīng)二沉池沉淀后出水效果穩(wěn)定較優(yōu),出水SS均在檢測限外。
2.2最優(yōu)方案確定
通過上述3組深度處理方案對強化除磷脫氮工藝出水污染物的去除效果研究,下面將各污染指標的處理情況進行對比分析,圖8和圖9為不同方案總出水污染物濃度比較。
由于強化除磷脫氮出水NH3-N濃度較低,經(jīng)過以上3種深度處理方案后處理效果并不明顯。
以TP指標來說,方案一中臭氧+生物活性炭對TP的去除效果較差,幾乎沒有去除效果;而方案二中采用了三級除磷工藝,在強化除磷脫氮工藝出水TP已達標的基礎上,進一步將TP降至0.1 mg/L以下;方案三中反滲透出水TP的測定上低于檢測限,遠高于地表IV類水標準限制要求。
在TN的處理上,方案二對TN的去除效果最好,經(jīng)過硫自養(yǎng)反硝化單元出水TN濃度為1.7 mg/L,去除率約為58.5%;方案三對TN的處理效果較優(yōu),平均出水濃度為1.8 mg/L;方案一中臭氧活性炭對TN的去除效果并不大,僅為活性炭吸附了部分TN,出水TN濃度為3.5 mg/L,去除率為14.6%,但最終出水TN指標也完全可以達到地表IV類水標準限制要求(≤5 mg/L)。
由圖9得知,方案一中臭氧活性炭對COD的去除效果較好,出水COD平均濃度為7.9 mg/L,平均去除率為76.7%;方案二對COD的去除效果較差,由于后續(xù)深度處理中僅針對除磷脫氮設置了深度處理單元,在二級出水NH3-N較低的情況下,使得曝氣生物濾池在硝化作用中消耗碳源較少,所以對有機物去除效果較小;方案三對有機物的去除效果最優(yōu),出水濃度低于方法檢測限。
綜上所述,方案三雖然對各污染指標均具有最優(yōu)的處理效果,但因其投資成本和運行費用較高,不適宜大規(guī)模水量處理使用。方案一作為強化除磷脫氮工藝的后接深度處理單元,主要針對二級出水中的有機物進行了強化去除,使得最終出水中各污染物指標均可穩(wěn)定到達地表水IV類標準限值要求。
3 結論
(1)強化除磷脫氮工藝對于基本控制指標COD、NH3-N、TN、TP的去除率分別為:87.2%、98%、88.4%、95.4%,出水的平均濃度分別為:33.9 mg/L、0.1 mg/L、3.8 mg/L、0.18 mg/L,其中SS的出水濃度低于檢測限。除部分COD未達標外,其余指標均滿足地表水環(huán)境質(zhì)量標IV類水標準限值要求。
(2)綜合考慮3個方案,方案一臭氧氧化-生物活性炭吸附對各指標污染物的去除效果均較優(yōu),其中COD、NH3-N、TN、TP的平均出水濃度分別為8.0 mg/L、0.1 mg/L、3.8 mg/L、0.2 mg/L。
(3)本項目確定的最優(yōu)組合方案如圖10所示。
最佳工藝方案為采用強化除磷脫氮工藝為生物處理單元,深度處理單元采用臭氧氧化-生物活性炭工藝,在不投加相關藥品的前提下,系統(tǒng)出水已滿足《地表水環(huán)境質(zhì)量標準》(GB 3838-2002)IV類水(TN≤5 mg/L)要求。
來源:《給水排水》 作者:張健君、陳立春等
特此聲明:
1. 本網(wǎng)轉載并注明自其他來源的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點。
2. 請文章來源方確保投稿文章內(nèi)容及其附屬圖片無版權爭議問題,如發(fā)生涉及內(nèi)容、版權等問題,文章來源方自負相關法律責任。
3. 如涉及作品內(nèi)容、版權等問題,請在作品發(fā)表之日內(nèi)起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關權益。